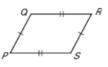


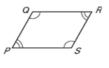
 ${\color{red}Quadrilateral:} \begin{tabular}{ll} A polygon with four sides whose interior angles sum to 360^0. \\ \end{tabular}$

Example 7 Find an unknown interior angle measure

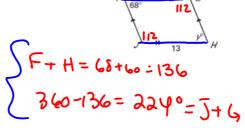

Find the value of x in the diagram shown.

THEOREM 8.3

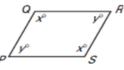
If a quadrilateral is a parallelogram, then its opposite sides are congruent.


If \overrightarrow{PQRS} is a parallelogram, then $\overrightarrow{QP}\cong \overline{RS}$ and $\overrightarrow{QR}\cong \overline{PS}$.

THEOREM 8.4

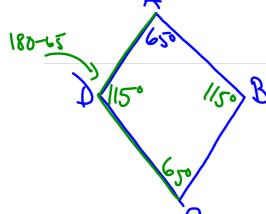

If a quadrilateral is a parallelogram, then its opposite angles are congruent.


If PQRS is a parallelogram, then $\angle P \cong \underline{\langle R \rangle}$ and $\underline{\langle Q \rangle} \cong \angle S$.


Example 2 Use properties of parallelograms

Find the values of x and y.

If a quadrilateral is a parallelogram, then its consecutive angles are Supplementary .

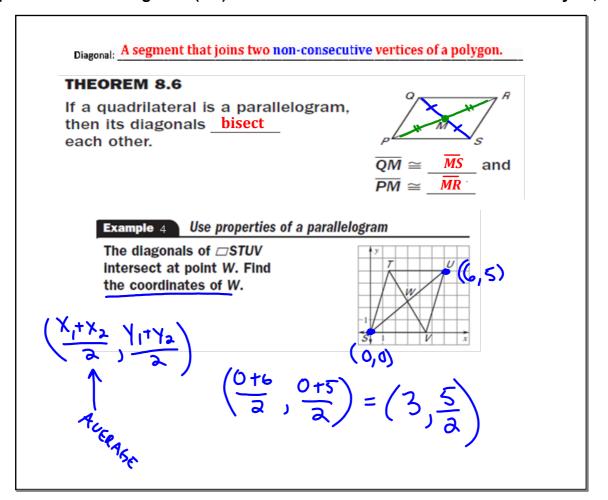


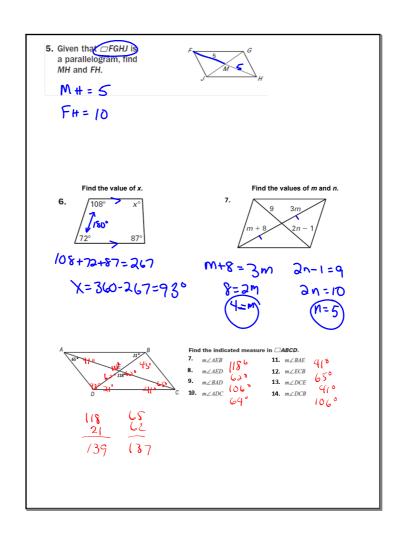
If PQRS is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$

Example 3 Use properties of a parallelogram

Gates As shown, a gate contains several parallelograms. Find $m\angle ADC$ when $m\angle DAB = 65^{\circ}$.

Checkpoint Find the Indicated measure in □KLMN shown at the right.

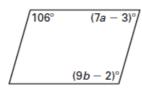

$$Y = 123$$

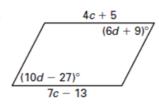

$$Z = 57 \quad (180 - 123 = 57)$$

$$2x - 3 = 37$$

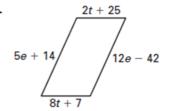
$$+3 + 3$$

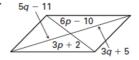
$$2x = 40$$



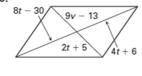

8.2 Practice C
For use with pages 514–521

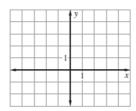
Find the value of each variable in the parallelogram.


1.


2.


3.


4



5

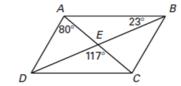
6

- **8.** In *□WXYZ*, *m*∠*W* is 50 degrees more than *m*∠*X*. Sketch *□WXYZ*. Find the measure of each interior angle. Then label each angle with its measure.
- 9. In □EFGH, m∠G is 25 degrees less than m∠H. Sketch □EFGH. Find the measure of each interior angle. Then label each angle with its measure.

Find the indicated measure in $\square ABCD$.

10. *m∠AEB*

11. *m∠BAE*


12. *m∠AED*

13. *m∠ECB*

14. *m∠BAD*

15. *m∠DCE* **17**. *m*∠*DCB*

16. *m∠ADC*

