Honors PreCalculus

Name

Law of Sines Review Problems

Use the Law of Sines to solve the following triangles. If two triangles exist, solve both of them.

1. $\triangle ABC$; A = 40°, B = 30°, b = 10 10 SIM400 Q

02 12.86

3. △ABC; A = 32°, a = 17, b = 11 ONE △

17 11511320 = SINB B= Sin (11511329 2200 5141280 = 17 SINI280 C = 110° az 12.86

2. $\triangle BCD$; $B = 16^{\circ}$, $C = 103^{\circ}$, c = 12b= 3.39

4. ΔEFG ; $F = 73^{\circ}$, f = 24, g = 28

B=200 Sinh 285 in 730

C=1280 G=5in 730

C=25.28 G= in 130

A 1818 200

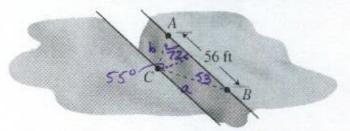
az 10.77

5. ΔPQR ; $P = 30^{\circ}$, q = 18, p = 9Q=900 Sin Q = Sin 300/18 Q=90° 182-92-12 r= 15.59

7. $\triangle ABC$; $A = 136^{\circ}$, a = 15, b = 28

SinB 28511136°

B= UNDEF

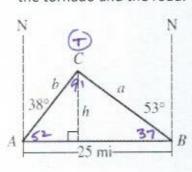

107.26 r = 15.59

8. ΔUSA ; $U = 19^{\circ}$, s = 22, $S = 47^{\circ}$

6. ΔJKL; J = 64°, j = 16, k = 17 2Δ5 1, = 12.2 l2 x 20 2.8

U 22 Sin 190 S14190 SIN470

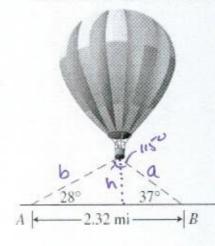
A=1140 a = 27.48 9. Two markers A and B on the same side of a canyon rim are 56 feet apart. A third marker C, located across the rim, is positioned so that angle BAC = 72° and angle ABC = 53°.


a. Find the distance between C and A. (6)

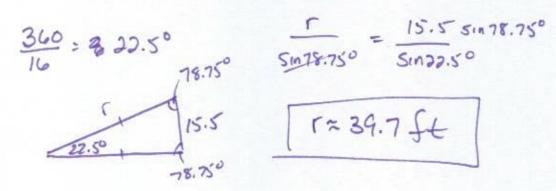
 b. Find the distance between the two canyon rims (Assume they are parallel).

$$a \sin 70^\circ = \frac{d}{b}$$

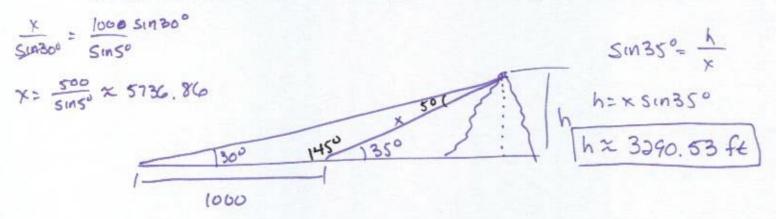
$$d = 6 \sin 70^\circ \approx 51.9 \text{ ft}$$


10. Two meteorologists are 25 miles apart, located on an East-West road. The meteorologist at point A sights a tornado 38° East of North. The meteorologist at point B sights the same tornado at 53° West of North. Find the distance from each meteorologist to the tornado. Also find the distance between the tornado and the road.

- m each meleuroson $\frac{a}{\sin 50} = \frac{25 \sin 50^{\circ}}{\sin 91^{\circ}} = \frac{b}{\sin 91^{\circ}} = \frac{b}{\sin 91^{\circ}}$ $b \approx 15.1 \text{mi}$
- a 2 19.7 mi


h=asin370 or h= bsin500

11. Observers 2.32 miles apart see a hot-air balloon directly between them, but at the angles of elevation shown in the figure. Find the altitude of the balloon.



$$\frac{a}{\sin 30^{\circ}} = \frac{2.32}{\sin 15}$$
 $\frac{b}{\sin 37^{\circ}} = \frac{2.32}{\sin 15}$

 A Ferris wheel has 16 evenly spaced cars. The distance between adjacent chairs is 15.5 feet. Find the radius of the wheel (to the nearest 0.1 feet).

13. While hiking on a level path toward Colorado's front range, Otis Evans determines that the angle of elevation to the top of Long's Peak is 30°. Moving 1000 feet closer to the mountain, Otis determines the angle of elevation to be 35°. How much higher is the top of Long's Peak than Otis's elevation?

14. A street sign that is on a hill with a 12° incline is leaning at a 4° angle from the vertical. It casts a shadow that is 7 feet long when the sun's angle of elevation is 40°. What is the length of the street sign's post? (How would your answer change if the sun is on the other side of the sign?)

$$\frac{x}{\sin 40^{\circ}} = \frac{7 \sin 40^{\circ}}{\sin 40^{\circ}} =$$