\qquad
\qquad Date \qquad

6-2
 Practice
 Multiplying and Dividing Radical Expressions

Multiply, if possible. Then simplify. To start, identify the index of each radical.

1. $\sqrt[3]{4} \cdot \sqrt[3]{6}$
2. $\sqrt{5} \cdot \sqrt{8}$
3. $\sqrt[3]{6} \cdot \sqrt[4]{9}$
index of both radicals is 3

$$
\sqrt[3]{4 \cdot 6}
$$

Simplify. Assume all variables are positive. To start, change the radicand to factors with the necessary exponent.
4. $\sqrt[3]{27 x^{6}}$
5. $\sqrt{48 x^{3} y^{4}}$
6. $\sqrt[5]{128 x^{2} y^{25}}$

$$
=\sqrt[3]{3^{3} \cdot\left(x^{2}\right)^{3}}
$$

Multiply and simplify. Assume all variables are positive.
7. $\sqrt{12} \cdot \sqrt{3}$
8. $\sqrt[4]{7 x^{6}} \cdot \sqrt[4]{32 x^{2}}$
9. $2 \sqrt[3]{6 x^{4} y} \cdot 3 \sqrt[3]{9 x^{5} y^{2}}$

Simplify each expression. Assume all variables are positive.
10. $\sqrt[3]{4} \cdot \sqrt[3]{80}$
11. $5 \sqrt{2 x y^{6}} \cdot 2 \sqrt{2 x^{3} y}$
12. $\sqrt{5}(\sqrt{5}+\sqrt{15})$
13. Error Analysis Your classmate simplified $\sqrt{5 x^{3}} \cdot \sqrt[3]{5 x y^{2}}$ to $5 x^{2} y$. What mistake did she make? What is the correct answer?
14. A square rug has sides measuring $\sqrt[3]{16} \mathrm{ft}$ by $\sqrt[3]{16} \mathrm{ft}$. What is the area of the rug?
\qquad
\qquad Date \qquad

6-2
 Practice (continued)
 Form K
 Multiplying and Dividing Radical Expressions

Divide and simplify. Assume all variables are positive. To start, write the quotient of roots as a root of a quotient.
15. $\frac{\sqrt{36 x^{6}}}{\sqrt{9 x^{4}}}$
16. $\frac{\sqrt[4]{405 x^{8} y^{2}}}{\sqrt[4]{5 x^{3} y^{2}}}$
17. $\frac{\sqrt[3]{75 x^{7} y^{2}}}{\sqrt[4]{25 x^{4}}}$
$=\sqrt{\frac{36 x^{6}}{9 x^{4}}}$

Rationalize the denominator of each quotient. Assume all variables are positive. To start, multiply the numerator and denominator by the appropriate radical expression to eliminate the denominator.
18. $\frac{\sqrt{26}}{\sqrt{3}}$
19. $\frac{\sqrt[3]{x}}{\sqrt[3]{2}}$
20. $\frac{\sqrt{7 x^{4} y}}{\sqrt{5 x y}}$
$=\frac{\sqrt{26}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$
21. Einstein's famous formula $E=m c^{2}$ relates energy E, mass m, and the speed of light c. Solve the formula for c. Rationalize the denominator.
22. The formula $h=16 t^{2}$ is used to measure the time t it takes for an object to free fall from height h. If an object falls from a height of $h=18 a^{5} \mathrm{ft}$, how long did it take for the object in terms of a ?

