For problems 1 – 4 use the Triangle Inequality Theorem to determine whether the given side lengths will create a triangle. If a triangle exists, classify it by both sides (Equilateral, Isosceles or Scalene) and angles

Classify by:

Sides & NOT POSSIBLE

3. 7, 22, 21 $7+\partial 1 > \partial \partial$? $7+\partial 1^2 = \partial \partial^2 4$. 2, 5, 6 2+6 > 6 $2+6^2 = 6^2$ Triangle? 49+441=484 Triangle? 490 > 484 455=36 Classify by: $2+6^2 = 6^2$ $2+6^2 = 6^2$

Sides SCALENE

Angles ACUTE

Angles OBTUSE

5. Find the measures of the missing angles, then classify each triangle in the diagram by its sides and angles.

m <2/80-82-32 = 66°

m <3 180-66-19= 95°

m < 4 180 - 58 - 95 = 27°

Classify ABCD by Sides: SCALENE

Classify DDEF by Sides: SCALENE

6. Find the measures of the missing angles, then classify each triangle in the diagram by its sides and

angles.

Classify AMNO by Sides: SCALENE

Classify ΔPQO by Sides: SOS CELES

by Angles: AWTE

by Angles: AWTE

7. Graph $\triangle ABC$ with vertices A(1,1), B(-3,3), and C(-3,-3). Then use the Pythagorean Theorem to find the side lengths.

CHECK FOR RIGHT D! "C" = MING 6 (100) + (100) = 6

$$30 + 32 = 36$$

$$52 \neq 36$$
Side Lengths: $AB = 36$

Side Lengths: AB =

Is ΔABC a Right Triangle?__ NO

If not, is it an Obtuse Triangle, or an Acute Triangle? Acute

Explain why you classified it as Acute or Obtuse. (2^2+6^2)

Classify $\triangle ABC$ by its sides (Scalene, Isosceles or Equilateral), and explain how you came to that classification.

SCALENE: ALL 3SIDES DIFFERENT LENGTHS

8. Graph $\triangle QRS$ with vertices Q(4,-1), R(5,6), and S(1,3). Then use the Pythagorean Theorem to find the side lengths. Finally, classify the triangle by its sides and determine if it is a right triangle.

Is ΔQRS a Right Triangle?

If not, is it an Obtuse Triangle, or an Acute Triangle?

Explain why you classified it as Acute or Obtuse.

Classify ΔQRS by its sides (Scalene, Isosceles or Equilateral), and explain how you came to that classification.

I SOSCELES: RS = QS

9. Given the diagram below, explain—without using the Triangle Sum Theorem—why m < 1 + m < 2 + m < 3 = m < 4 + m < 5 + m < 5 = 180°. You can use any other theorems or postulates that we have introduced, both for triangles and parallel lines. You may use either a paragraph proof or the two-column format. If you choose to do a paragraph proof, you must support your statements with theorems or postulates.

Given: m | | n

Prove:

m < 1 + m < 2 + m < 3 = m < 4 + m < 5 + m < 6 = 180°

Statements

Reasons

(i) m IIn

@ 41=46; 42=45

(3)4 3=44

W 49=×10

(5) 410+41=180

46+49=180

6 4 10 = 42+43

49=44+35

(7) 42+×3+×1=180

4 6+44+45 = 180

@ GIVEN

(2) ALTERNATE INTERIOR & POSTULATE

(3) VERTICAL \$5 =

4) ALTERNATE INT. 4 POST.

(5) LINEAR PAIR POST.

6 EXTERIOR 4 THEOREM

(7) SUBSTITUTION

(8) 41+42+43=44+45+46=180 (8) SUBSTITUTION